Problem 1.24

Rolling tire

A tire of radius R rolls in a straight line without slipping. Its center moves with constant speed V. A small pebble lodged in the tread of the tire touches the road at $t=0$. Find the pebble's position, velocity, and acceleration as functions of time.

[TYPO: It should be V in the figure, not v.]

Solution

In order to find the position vector of the pebble with respect to the origin \mathbf{r}, we will find the position of the tire's center with respect to the origin \mathbf{r}_{c} and the position of the pebble with respect to the tire's center \mathbf{r}_{p} and then add them vectorially.

$$
\mathbf{r}=\mathbf{r}_{c}+\mathbf{r}_{p}
$$

Figure 1: This is an illustration of the process for finding \mathbf{r}.
The position of the tire's center is found using the kinematic formula,

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} .
$$

Since the tire is moving at constant speed $V, v_{0}=V$ and $a=0$. Also, the center is always a distance of R above the ground.

$$
\mathbf{r}_{c}=\left(x_{0}+V t\right) \hat{\mathbf{x}}+R \hat{\mathbf{y}}
$$

t seconds after the tire is set in motion, an angle of ωt is swept out as shown in Figure 1, where ω is the angular speed that the tire rotates. The position of the pebble lies to the left of the origin,
so the x-component will be negative. The y-component is the vertical distance from the origin to the pebble.

$$
\mathbf{r}_{p}=-R \sin (\omega t) \hat{\mathbf{x}}+(R-R \cos \omega t) \hat{\mathbf{y}}
$$

Here ω will be written in terms of the known quantities, R and V. Because $V=R \omega, \omega=V / R$. So

$$
\mathbf{r}_{p}=-R \sin \left(\frac{V t}{R}\right) \hat{\mathbf{x}}+\left(R-R \cos \frac{V t}{R}\right) \hat{\mathbf{y}} .
$$

With \mathbf{r}_{c} and \mathbf{r}_{p} in hand, \mathbf{r} is known.

$$
\begin{aligned}
\mathbf{r} & =\mathbf{r}_{c}+\mathbf{r}_{p} \\
& =\left(x_{0}+V t-R \sin \frac{V t}{R}\right) \hat{\mathbf{x}}+\left(2 R-R \cos \frac{V t}{R}\right) \hat{\mathbf{y}}
\end{aligned}
$$

Therefore,

$$
\mathbf{r}(t)=R\left[\left(\frac{x_{0}}{R}+\frac{V t}{R}-\sin \frac{V t}{R}\right) \hat{\mathbf{x}}+\left(2-\cos \frac{V t}{R}\right) \hat{\mathbf{y}}\right],
$$

where x_{0} is the initial position of the pebble along the x-axis. Notice that each of the fractions is dimensionless. To find the velocity, take the derivative of the position vector with respect to time.

$$
\mathbf{v}(t)=\dot{\mathbf{r}}(t)=R\left[\left(\frac{V}{R}-\frac{V}{R} \cos \frac{V t}{R}\right) \hat{\mathbf{x}}+\left(\frac{V}{R} \sin \frac{V t}{R}\right) \hat{\mathbf{y}}\right]
$$

Therefore,

$$
\mathbf{v}(t)=V\left[\left(1-\cos \frac{V t}{R}\right) \hat{\mathbf{x}}+\sin \left(\frac{V t}{R}\right) \hat{\mathbf{y}}\right] .
$$

To find the acceleration, take the derivative of the velocity vector with respect to time.

$$
\mathbf{a}(t)=\dot{\mathbf{v}}(t)=V\left[\left(\frac{V}{R} \sin \frac{V t}{R}\right) \hat{\mathbf{x}}+\frac{V}{R} \cos \left(\frac{V t}{R}\right) \hat{\mathbf{y}}\right]
$$

Therefore,

$$
\mathbf{a}(t)=\frac{V^{2}}{R}\left[\sin \left(\frac{V t}{R}\right) \hat{\mathbf{x}}+\cos \left(\frac{V t}{R}\right) \hat{\mathbf{y}}\right] .
$$

Figure 2: This is a plot of the pebble's path (known as a cycloid) for $0 \leq t \leq 6 \pi, x_{0}=2, V=1$, and $R=1$.

